Brugada 症候群における SCN5A のコピー数多型に ついての検討

園田桂子1 大野聖子1.2* 堀江 稔2

SCN5Aは心臓ナトリウムチャネルをコードする遺伝子である.Brugada症候群 (BrS)の遺伝子変異同定率は20%程度でしかないが,SCN5A変異はその大部分を 占める.一方,様々な疾患とコピー数多型(CNV)との関連性が報告されているが, BrSでは2例の報告しかなく,アジア人では検討されていない.そこで,われわれ は有症候性もしくは家族歴のある日本人BrS患者151人を対象とし,SCN5Aの サンガー法によるシークエンス解析とMLPA法によるCNVの検出を施行した.サ ンガー法により,20人の発端者にSCN5A変異を同定した.MLPA法は140人で 結果を得ることができ,そのうち4人に各々異なるCNVを同定した(欠失3人, 重複1人).4人中3人は致死性不整脈イベントを有しており,平均診断年齢は 23±14歳と若年であった.安静時12誘導心電図では4人ともPQ時間は延長 し,QRS幅は正常上限であった.これら4人の臨床像は,蛋白生成が減少する truncating変異や,ナトリウム電流が著明に減少するミスセンス変異を有する患者 群と類似していた.SCN5AのCNVは,有症候性もしくは家族歴のあるBrS発端 者の2.9%に同定され,臨床像も重症であり,スクリーニングされるべき変異と考 えられる.

(心電図, 2020; 40:5~15)

I. はじめに

Brugada症候群(Brugada syndrome : BrS)は若 年者に心室細動(ventricular fibrillation : VF)や突 然死を引き起こす遺伝性不整脈疾患であり,安静時 12誘導の右側胸部誘導($V_1 \sim V_3$)で coved型 ST 上昇 を示す¹⁾. BrSの原因遺伝子は,1998年に心臓ナト リウムチャネルの a サブユニットをコードする遺伝 子である SCN5A の変異が報告された後²⁾,現在ま でに約 20遺伝子において 300を超える変異が報告

Drugaua症候种
SCN5A
コピー数多型

1国立循環器病研究センター分子生物学部
(〒564-8565)大阪府吹田市岸部新町6-1)
2滋賀医科大学アジア疫学研究センター
*は責任者を示す

Copy Number Variations of SCN5A in Brugada Syndrome Keiko Sonoda, Seiko Ohno, Minoru Horie

図1 コピー数多型の概念(A)と欠失を伴う場合の遺伝子解析例(B)

A:赤い部分をある遺伝子とする.正常例では,遺伝子が両方のアリルに一つずつあるので,コピー数は2である. 欠失例では片方の遺伝子がないので,コピー数は1となる.重複例では,片方のアリルの遺伝子が2に 増えるので,コピー数は3となる.

B:解析対象のエクソン(太線)の前後のイントロン(細線)部分にプライマー(矢印)を設定し, PCRで増幅した後, ダイレクトシークエンスにより塩基配列を決定する.変異例では変異部分が増幅されるので,シークエンス により変異を同定できるが, 欠失例では欠失している部分は増幅されないので,正常例と同じ結果になる.

されている. 大部分は心臓ナトリウムチャネル機能 低下をきたす *SCN5A*の変異, もしくはそれに関与 する遺伝子の変異である. BrSは遺伝性疾患である にもかかわらず, 遺伝子変異同定率は 20%程度で しかない^{3)~5)}. 遺伝子変異が同定されない一因とし て, "検査法に起因する変異の見落とし"を考える必 要がある. すなわち, 従来のサンガー法や現在主流 の short-readの 次 世 代 シー ク エ ン サー(next generation sequencing : NGS)では同定しがたい変 異が存在する.

Ⅱ. コピー数多型とその検査法

ヒトの遺伝子は通常2量体として存在する.遺伝 子のコピー数が異なる場合をコピー数多型(copy number variation : CNV)という.図1Aに概念を 示す.赤い部分をある遺伝子とすると、①正常例で は両方のアリルに一つずつの遺伝子があり、コピー 数は2である.②では一方の遺伝子が欠損してお り、コピー数は1、逆に③では一方の遺伝子で1つ 挿入されているのでコピー数は3になる.

従来,遺伝子解析はPCRとダイレクトシークエ ンスを中心とした検査法を用いてきた.解析対象遺 伝子の各エクソンをPCRで増幅し,ダイレクトシー クエンスで変異を検出するのだが,CNVは1kb以 上の欠失あるいは重複となるため,PCRで増幅す る範囲を超えてしまい,シークエンスで異常が検出 できない(図1B).そこで,特定の遺伝子に対して CNVを検出するために,TaqMan[®] copy number assay 法(URL:https://www.thermofisher.com/) や multiplex ligation-dependent probe amplification (MLPA)法(URL:https://www.mlpa.com/)が開発 された. 詳細は各社 HPを参照していただきたい.

Ⅲ. 不整脈疾患におけるコピー数多型

検査法の発達により,様々な不整脈疾患で CNV が同定されるようになった.Bhuiyanらはカテコラ ミン感受性多形性心室頻拍の 2家系に心筋リアノジ ン 受容体遺伝子(*RYR2*)の CNVを同定した⁶⁾. Barcらは QT 延長症候群において *KCNQ1*の CNV を 1家系,*KCNH2*の CNVを 2家系に同定した⁷⁾. われわれも不整脈原性右室心筋症の症例にデスモ ソーム関連遺伝子の一つであるプラコフィリンを コードする遺伝子(*PKP2*)に CNVを同定し,報告 した⁸⁾.これらの報告では,いずれも MLPA 法を 用いて CNVをスクリーニングしている.

Ⅳ. BrSにおける SCN5A のコピー数多型

BrSでは, SCN5AのCNVを有する欧米人2症例 が報告されているだけで^{9),10)}, アジア人について はBrSの有病率が高いにもかかわらず, 検討され ていなかった. そこで, われわれは日本人のBrS 発端者における SCN5AのCNVについて検討し, 報告した. 以下に, 2018年"Heart Rhythm"に掲載 されたわれわれの論文について述べる¹¹⁾.

1. 研究方法・結果

本研究では、有症候性もしくは家族歴のある BrS 発端者 151人を対象に、SCN5Aのサンガー法によ る変異検出と MLPA法による CNV 検出を行った. サンガー法により 20人の発端者に SCN5Aの一塩 基置換が同定した. MLPA法の結果は 140人で得る ことができ、そのうち 4人に SCN5Aの CNV を同 定した.

MLPA結果を図2に示す.発端者1はSCN5Aの 全エクソンの欠失,発端者2と3は各々エクソン4 とエクソン24の欠失,発端者4はエクソン17-24の 重複を有していた.発端者1の欠失の範囲をCGH 法で確認したところ,SCN5Aとその周囲20個の遺 伝子を含む1.91Mbであった(図3).発端者2と3 は long-range PCR法で欠失の範囲を確認した (図 4A, B). 発端者 4は quantitative PCR (qPCR) 法で重複を確認し, PCR法で重複配列の位置を確 認した(図 4C).

CNVが同定された4人の発端者の臨床的特徴を 表1に,心電図と家系図を図5に示す.平均診断年 齢は23±14歳と一般的なBrS患者に比べ若年であ り,3人は致死性不整脈イベントを発症していた. 心電図は4人ともPQ時間が延長し,QRS幅も正常 上限であった.

変異による表現型の違いを検討するため、サン ガー法で同定した SCN5A 変異のうち、ナトリウム 電流量が 90%以上減少する変異(M_{inactive})をもつ4 人とタンパク合成が減少する truncating変異(T)を もつ6人を併せた 10人と、CNVを同定した4人の 臨床所見を比較したが、2群間で有意差は認めな かった(表2).次に、これら14人をまとめてA群 とし、SCN5A 変異が同定されなかった116人をB 群として、AとBの2群間で臨床所見を比較した (表3).A群ではVF・CPAの発症率、洞不全や房 室ブロックの合併率、不整脈の家族歴の割合が有意 に高かった.心電図所見については、A群で PQ時 間と QRS幅が有意に延長しており、Brugada心電 図タイプ1はA群で高率に認められた.

2. 考察

本研究では BrS 患者 140人中4人に SCN5Aの CNVを同定した(2.9%). 過去に3つのコホート研 究が BrS 患者の SCN5Aの CNVを調べているが, 合計 334人中1人しか同定されていなかった (0.3%)^{10),12),13)}. われわれの研究結果が過去の研究 と違った要因として,研究対象患者の人種と,対象 患者の選択法の影響が考えられる. 過去の研究はい ずれも欧米人を対象としていたが,われわれの研究 は日本人のみを対象とした. また,われわれは研究 対象を有症候性もしくは家族歴のある患者とし,心 臓電気生理学的検査で VF が誘発された無症候性患 者は除外した.

同定した4つのCNVによるナトリウム電流の変

図 2 MLPA 法による SCN5A の CNV 解析結果

エクソン6は転写物のうちアイソフォーム3にしか存在しないので、エクソン7-29はアイソフォーム1(NM_198056.2)のエクソン6-28に相当する.

- A:発端者1の結果. SCN5Aの全エクソンでコピー数が半減している.
- B:発端者2の結果.エクソン4のコピー数が半減している.
- C:発端者3の結果.エクソン24のコピー数が半減している.
- D:発端者4の結果.エクソン17-24のコピー数が1.5倍に増加している.

図3 発端者1のCGH法の結果 欠失の範囲は1.91Mbで, SCN5Aと周囲20個の遺伝子が含まれている.

化について考察した、全エクソンが欠失している発 端者1では、鋳型 DNAが正常の半分であるため、 生成されるタンパクも半減すると予想される. 一つ のエクソンが欠失している発端者2と発端者3につ いては、過去の報告と今回のわれわれの報告が生成 されるチャネルが無機能であることを証明した¹⁴⁾. エクソン17-24の重複がある発端者4では、巨大 な重複配列が SCN5A 内に挿入されているため、ナ トリウムチャネルの機能は高度に障害されると予想 される.以上から.4つのCNVはいずれもハプロ 不全をきたしている可能性が高い。90%以上のナト リウム電流低下をきたすミスセンス変異や. nonsense-mediated mRNA decayによりタンパク 生成が減少するナンセンス変異やフレームシフト変 異も、ハプロ不全をきたす. これらの変異と CNV が表2のように類似した臨床像を呈する理由は、ど ちらもハプロ不全をきたすためと考えられる。これ らのハプロ不全をきたす SCN5A 変異を有する発端 者(グループA)は, SCN5Aの変異が同定されなかっ

た発端者(グループ B)に比べ,重症な表現型を有していた(表 3). ハプロ不全をきたす *SCN5A* 変異の同定は, BrS 患者の管理に有用であると考えられる. 3. 結語

われわれは,有症候性もしくは家族歴のある BrS 発端者の 2.9%に *SCN5A* の CNV を同定した.BrS 患者に対し,*SCN5A* の CNV をスクリーニングす るべきであると考える.

V. 今後の課題

Brugada症候群をはじめ、遺伝性不整脈疾患において CNV を検査することは、過去の研究やわれわれの報告からも重要であることがわかった.しかし MLPA法の場合、ターゲットとした遺伝子の CNV を調べることはできるが、網羅的な検索はできない.全ゲノムの CNV検出には、DNA array や NGS が活用される.以前は、コスト面からスクリーニングとして NGSを使用することは難しかったが、現在では低価格化が進み、DNA array よりも安価と

図4 Long-range PCRの電気泳動と quantitative PCRの結果

- A:エクソン3のフォワードプライマーとエクソン5のリバースプライマーによる PCR 産物の電気泳動の結 果. コントロールでは10kbの PCR 産物のみ生成されているが,発端者2では10kbと3kbの PCR 産物 が生成されている.
- B:エクソン 23のフォワードプライマーとエクソン 25のリバースプライマーによる PCR 産物の電気泳動の 結果.コントロールおよび発端者 3の妻と次女では 4kbの PCR 産物のみ生成されているが,発端者 3と 長女では 1.7kb と 4kbの PCR 産物が生成されている.
- C:コントロール(オレンジ)と発端者4(青)の quantitative PCR法の結果を表した棒グラフ(左).エクソン 17とエクソン23の結果は発端者においてコントロールの1.5倍である。イントロン23のフォワードプラ イマーとイントロン17のリバースプライマーによる PCR 産物の電気泳動の結果(右).コントロールで は PCR 産物は生成されないが,発端者4では6kbのPCR 産物が生成されている。

表1 SCN5Aのコピー数多型を有する4人の発端者の臨床像													
No.	性	診断 年齢 (歳)	症状	発症 年齢 (歳)	家族歴	HR (bpm)	PQ (ms)	QRS (ms)	QTc (ms)	J 波	安静時 心電図	併存症	<i>SCN5A</i> の コピー数多型
1	男	15	失神 心肺停止 心室細動	15	房室ブロック	60	320	120	400	-	Type1	洞不全症候群 房室ブロック	全エクソン欠失
2	男	32	失神 心室頻拍	25	なし	60	260	120	400	-	Type1	房室ブロック	エクソン 4 欠失
3	男	42	心肺停止 心室細動	16	突然死	60	210	110	410	-	Type1	房室ブロック	エクソン 24 欠失
4	女	9	無症状	-	Brugada 症候群 突然死	72	200	120	416	-	Type1	房室ブロック	エクソン 17-24 重複

図5 家系図と心電図

A: 発端者 1, B: 発端者 2, C: 発端者 3, D: 発端者 4.

	コピー数多型 (n = 4)	$\begin{array}{l} T \text{ or } M_{\text{inactive}} \\ (n = 10) \end{array}$	p値
男性, n(%)	3(75)	9(90)	
診断年齢 – 歳	23 ± 14	45 ± 6	0.05
症状, n(%)	3(75)	8 (80)	1
発症年齢 – 歳	19 ± 6	39 ± 19	0.066
失神, n(%)	3(75)	6(60)	1
心室細動・心肺停止, n(%)	3(75)	5(50)	1
家族歴, n(%)	3(75)	8 (80)	1
Brugada症候群, n(%)	1 (25)	1 (10)	0.505
突然死・致死性不整脈, n(%)	2(50)	4(40)	1
失神, n(%)	0(0)	1 (10)	1
不整脈, n(%)	1 (25)	5(50)	0.58
洞不全症候群,n(%)	0(0)	4(40)	0.251
房室ブロック, n(%)	1 (25)	0(0)	0.286
ペースメーカ植込み, n(%)	0(0)	5(50)	0.221
心房細動, n(%)	0(0)	0(0)	-
安静時心電図			
HR - ms	63 ± 6	66 ± 5	0.568
PQ - ms	248 ± 55	217 ± 27	0.277
QRS - ms	118 ± 5	118 ± 9	0.754
QT - ms	398 ± 13	395 ± 21	0.801
QTc - ms	407 ± 8	412 ± 18	0.601
JT - ms	280 ± 16	277 ± 21	0.776
JTc - ms	286 ± 9	290 ± 18	0.772
J波, n(%)	0(0)	2(20)	1
BrS type1, n (%)	4(100)	8(80)	1
併存症			
心房細動, n(%)	0(0)	3(30)	0.497
洞不全症候群,n(%)	1 (25)	5(50)	0.559
房室ブロック, n(%)	4(100)	9(90)	1
I群薬負荷試験	3	2	
陽性, n(%)	2(67)	2(100)	1
EPSによる心室細動誘発試験	2	5	
陽性, n(%)	0(0)	3(60)	0.429
加算平均心電図	2	3	
陽性, n(%)	2(100)	2(67)	1

表 2 SCN5Aのコピー数多型を有する発端者とTまたは Mactive 変異を有する発端者の臨床像の比較

	A群 (n=14)	Group 群 (n=116)	p值
男性, n(%)	12(86)	106(91)	0.618
診断年齢 – 歳	39 ± 19	45 ± 15	0.185
症状, n(%)	11 (79)	90(78)	0.735
発症年齢 – 歳	34 ± 19	40 ± 18	0.251
失神, n(%)	9(64)	59(51)	0.231
心室細動・心肺停止, n(%)	8(57)	25(22)	0.004
家族歴, n(%)	11(79)	65(56)	0.148
Brugada症候群, n(%)	2(14)	4(3)	0.135
突然死・致死性不整脈,n(%)	6(43)	47(41)	0.971
失神, n(%)	1 (7)	8(7)	1
不整脈, n(%)	6(43)	14(12)	0.01
洞不全症候群,n(%)	4 (29)	1(1)	< 0.001
房室ブロック, n(%)	1 (7)	3(3)	0.382
ペースメーカ植込み, n(%)	5(36)	6(5)	0.003
心房細動, n(%)	0(0)	0(0)	
安静時心電図			
HR - ms	65 ± 5	65 ± 13	0.427
PQ - ms	226 ± 38	179 ± 24	< 0.001
QRS - ms	118 ± 8	107 ± 20	0.003
QT - ms	395 ± 18	387 ± 33	0.149
QTc - ms	410 ± 15	399 ± 30	0.037
JT - ms	278 ± 19	280 ± 32	0.821
JTc - ms	288 ± 16	289 ± 30	0.889
J波, n(%)	2(14)	32(28)	0.354
BrS type1, n (%)	12(86)	45(39)	0.001
併存症			
心房細動, n(%)	3(21)	16(14)	0.422
洞不全症候群,n(%)	6(43)	6(5)	< 0.001
房室ブロック, n(%)	13(93)	31 (27)	< 0.001
I群薬負荷試験	5	84	
陽性, n(%)	4 (80)	81 (96)	0.21
EPSによる心室細動誘発試験	7	71	
陽性, n(%)	3(43)	47 (66)	0.243
加算平均心電図	5	68	
陽性, n (%)	4 (80)	45(66)	1

表3 A群とB群の臨床像の比較

なった. ただし, short-read法の NGSデータを用 いて, CNVを含む DNAの構造多型を検出する際は, リファレンスゲノムにマッピングしたリードの depthや position により間接的に推定することが多 いため,検出感度は十分とはいえない¹⁵⁾.最近で は, short-read法と long-read法を併用した構造多 型の検出も試みられている¹⁶⁾.われわれの研究室 では, long-read法の一つであるナノポアシークエ ンサーを用いて構造多型の解析を進めている.構造 多型がヒトゲノムに与える影響は一塩基多型の3 倍, 20kb以上の構造多型は一塩基多型の50倍と報 告されており¹⁷⁾,構造多型の同定により,遺伝性 不整脈疾患の新たな遺伝的背景が解明できると期待 できる.

付記

本稿は,第23回日本不整脈心電学会学術奨励賞 優秀賞を受賞した論文をもとに,総説としてまとめ たものである.なお,図表については,受賞論文よ り一部改変し,転載させていただいた.

受賞論文

Sonoda K, Ohno S, Ozawa J, Hayano M, Hattori T, Kobori A, Yahata M, Aburadani I, Watanabe S, Matsumoto Y, Makiyama T, Horie M : Copy number variations of *SCN5A* in Brugada syndrome. Heart Rhythm, 2018 : 5 : 1179-1188

〔文 献〕

- Brugada P, Brugada J : Right bundle branch block, persistent ST segment elevation and sudden cardiac death : a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol, 1992 ; 20 : 1391-1396
- 2) Chen Q, Kirsch GE, Zhang D, et al.: Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature, 1998; 392: 293-296
- Crotti L, Marcou CA, Tester DJ, et al. : Spectrum and prevalence of mutations involving BrS1- through

BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing : implications for genetic testing. J Am Coll Cardiol, 2012 ; 60 : 1410-1418

- 4) Kapplinger JD, Tester DJ, Alders M, et al. : An international compendium of mutations in the SCN5Aencoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm, 2010; 7: 33-46
- 5) Le Scouarnec S, Karakachoff M, Gourraud JB, et al. : Testing the burden of rare variation in arrhythmiasusceptibility genes provides new insights into molecular diagnosis for Brugada syndrome. Hum Mol Genet, 2015 ; 24 : 2757-2763
- 6) Bhuiyan ZA, van den Berg MP, van Tintelen JP, et al.: Expanding spectrum of human RYR2-related disease : new electrocardiographic, structural, and genetic features. Circulation, 2007; 116: 1569-1576
- 7) Barc J, Briec F, Schmitt S, et al. : Screening for copy number variation in genes associated with the long QT syndrome : clinical relevance. J Am Coll Cardiol, 2011 ; 57 : 40-47
- 8) Sonoda K, Ohno S, Otuki S, et al. : Quantitative analysis of PKP2 and neighbouring genes in a patient with arrhythmogenic right ventricular cardiomyopathy caused by heterozygous PKP2 deletion. Europace, 2017; 19:644-650
- 9) Eastaugh LJ, James PA, Phelan DG, et al. : Brugada syndrome caused by a large deletion in SCN5A only detected by multiplex ligation-dependent probe amplification. J Cardiovasc Electrophysiol, 2011 ; 22 : 1073-1076
- 10) Mademont-Soler I, Pinsach-Abuin ML, Riuro H, et al. : Large Genomic Imbalances in Brugada Syndrome. PLoS One, 2016 ; 11 : e0163514
- 11) Sonoda K, Ohno S, Ozawa J, et al. : Copy number variations of SCN5A in Brugada syndrome. Heart Rhythm, 2018 ; 15 : 1179-1188
- 12) Garcia-Molina E, Lacunza J, Ruiz-Espejo F, et al. : A study of the SCN5A gene in a cohort of 76 patients with Brugada syndrome. Clin Genet , 2013 ; 83 : 530-538
- 13) Koopmann TT, Beekman L, Alders M, et al. Exclusion of multiple candidate genes and large genomic rearrangements in SCN5A in a Dutch Brugada syndrome cohort. Heart Rhythm, 2007; 4:752-755
- 14) Schroeter A, Walzik S, Blechschmidt S, et al. : Structure and function of splice variants of the cardiac voltage-gated sodium channel Na (v) 1.5. J Mol Cell Cardiol, 2010; 49: 16-24

- 15) Tattini L, D'Aurizio R, Magi A : Detection of Genomic Structural Variants from Next-Generation Sequencing Data. Front Bioeng Biotechnol, 2015; 3:92
- 16) Chaisson MJP, Sanders AD, Zhao X, et al. : Multiplatform discovery of haplotype-resolved structural

variation in human genomes. Nat Commun , 2019 ; 10 : 1784

17) Chiang C, Scott AJ, Davis JR, et al. : The impact of structural variation on human gene expression. Nat Genet, 2017 ; 49 : 692-699

Copy Number Variations of SCN5A in Brugada Syndrome

Keiko Sonoda¹, Seiko Ohno^{1, 2}, Minoru Horie²

¹Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center ²Center for Epidemiologic Research in Asia, Shiga University of Medical Science

BACKGROUND : Loss-of-function mutations in *SCN5A* are present in ~20% of Brugada syndrome (BrS) patients. Copy number variations (CNVs) have been shown to be associated with several inherited arrhythmia syndromes. OBJECTIVE : The purpose of this study was to investigate *SCN5A* CNVs among BrS probands. METHODS : The study cohort consisted of 151 BrS probands who were symptomatic or had a family history of BrS, sudden death, syncope, or arrhythmic diseases. We performed sequence analysis of *SCN5A* by the Sanger method. To detect CNVs in *SCN5A*, we performed multiplex ligation-dependent probe amplification analysis of the 151 BrS probands. RESULTS : We identified pathogenic *SCN5A* mutations in 20 probands by the Sanger method. In 140 probands in whom multiplex ligation-dependent probe amplification was successfully performed, 4 probands were found to present different CNVs (deletion in 3 and duplication in 1) . Three of them had fatal arrhythmia events ; the remaining 1 was asymptomatic but had a family history. Mean age at diagnosis was 23 \pm 14 years. All of the baseline 12-lead electrocardiograms showed PQ-interval prolongation. The characteristics of these 4 probands with CNVs were similar to those of the probands with mutations leading to premature truncation of the protein or missense mutations causing peak I_{Na} reduction > 90% . CONCLUSION : We identified *SCN5A* CNVs in 2.9% of BrS probands who were symptomatic or had a family history.

Keywords : Brugada syndrome, SCN5A, Copy number variation