総説

二次元ヒト iPS 細胞由来心筋細胞シートの収縮運動に おける陽性階段現象の表出法の確立

中瀨古(泉)寛子^{1*} 千葉浩輝¹ 佐塚文乃² 後藤 愛¹ 布井啓雄¹ 神林隆一¹ 松本明郎³ 武井義則¹ 諫田泰成² 内藤篤彦⁴ 杉山 篤^{1,3}

ヒト人工多能性幹細胞由来心筋細胞(ヒト iPS 細胞由来心筋細胞)の単純二次元細 胞シートを多電極プローブ上に作成し,電気ペーシング下で電気生理学的指標を連 続記録した状態で薬物を曝露すると,催不整脈リスクおよび抗不整脈作用を検出で きる.また同細胞シートの電気刺激位置を工夫すると,生理的な陽性階段現象,す なわち「正の収縮速度 - 頻度関係」を表出でき,薬物による収縮弛緩運動の変化の評 価系としても利用可能である.同細胞シートの収縮速度を十分に引き出すには,プ ローブに接着した細胞シート中央部が辺縁部へ引き寄せられるという物理的条件を 考慮し,中央付近の最大弛緩領域に電気刺激位置を設定することで,興奮伝導,収 縮および弛緩運動の開始地点と伝播方向を一致させることが重要である.この発見 は心臓再同期療法への応用も期待できる.

(心電図, 2023;43:5-18)

Keywords ●ヒト人工多能性幹細胞由来心筋細胞
 ●興奮収縮連関
 ●収縮弛緩運動
 ●正の収縮速度-頻度関係
 ●心臓再同期療法

1東邦大学医学部薬理学講座

1 東市人子医子師架理子師座
 (〒143-8540 東京都大田区大森西5-21-16)
 2国立医薬品食品衛生研究所薬理部
 3 東邦大学医学部加齢薬理学講座
 4 東邦大学医学部生理学講座細胞生理学分野
 * は責任者を示す

I. はじめに

ヒト人工多能性幹細胞由来心筋細胞(ヒト iPS細胞由来心筋細胞)は,再生医療の分野では,虚血性心筋症で変性あるいは欠落した心筋細胞や心筋組織を補う細胞源として注目され,その移植の効果を検討する臨床試験が行われている¹⁾.一方,医薬品開発時の非臨床試験においては,薬物性QT延長症候群の誘発リスクの検出系の一つとして利用され²⁾,現在,薬物による心筋の収縮機能障害(以下,本稿で

Development of a Methodology for Showing a Positive Staircase of Contraction in Conventional Two-Dimensional Cell Sheets of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

Hiroko Izumi-Nakaseko, Koki Chiba, Ayano Satsuka, Ai Goto, Yoshio Nunoi, Ryuichi Kambayashi, Akio Matsumoto, Yoshinori Takei, Yasunari Kanda, Atsuhiko T. Naito, Atsushi Sugiyama

図1 ヒト iPS細胞由来心筋細胞シートの活動電位波形

HCN 遮断薬 zatebradine 処理前(Control)および後(0.15 µ M zatebradine)の波形を示し、処理前の波形では緩徐脱分極相 が観察される. それぞれの波形は1つの細胞シート内の異なる2つの細胞から記録した.

〔文献6より Fig. 2を許諾転載〕

は収縮毒性という用語を使用する)の評価系として も開発が進められている.また,患者由来の疾患 iPS 細胞由来心筋細胞が作成され,疾患の治療方法を開 発するためのモデル細胞として利用が進んでいる³.

一般に、ヒト iPS細胞由来心筋細胞は組織工学的 手法を加えずに単層二次元培養すると、その性質が |胎児型心筋細胞に近いことが報告され⁴⁾,上記の応 用において、その未熟性が問題視されることも多 い.しかし、その未熟性を加味した上で利用すれ ば、様々な情報を得ることができる.本総説では、 まずヒト iPS細胞由来心筋細胞の二次元細胞シート の電気生理学的特徴を紹介し、薬物の催不整脈リス クや抗不整脈作用の評価系として、ヒト iPS細胞由 来心筋細胞でどのような解析ができるかを紹介す る、次に同細胞シートの収縮弛緩運動の特徴につい て紹介した上で、局所的電気刺激方法を活用するこ とによって、今まで不可能であった二次元細胞シー トでの陽性階段現象, すなわち「正の収縮速度 – 頻 度関係 |の表出に成功した例を紹介する。最後に心 臓再同期療法と左室弛緩能との関連に着目した研究 を紹介し、ヒトiPS細胞由来心筋細胞シートで得ら れた結果から一考察加えたい.

Ⅱ. ヒト iPS細胞由来心筋細胞シートの 電気生理学的性質

ヒト iPS細胞由来心筋細胞は現在,心房筋型,心 室筋型などに作り分けることが可能になってきてい る.今回は主に心室筋型が多いとされる iCell[®] cardiomyocytes (FUJIFILM Cellular Dynamics 社 製)で得られた知見を中心に電気生理学的性質を紹 介する.

まず、ヒト iPS細胞由来心筋細胞の特徴として、 自動能の存在が挙げられる.その理由として、内向 き整流性 Kチャネル Kir2.1 (I_{K1})の発現が生体心室筋 に比較して低く静止膜電位が浅いこと、HCN4電流 が存在することが挙げられる.ヒト iPS細胞由来心 筋細胞を分散培養すると、静止膜電位と活動電位持 続時間はばらつくが⁵⁾、細胞シートにするとかなり 均一となり、静止膜電位は – 70 mV ほどで、緩徐脱 分極相をもつ Purkinje線維型活動電位波形を示す ことが報告されている (図 1)⁶⁾.この自動能は、HCN チャネル遮断(図 1)⁶⁾に加え、Na チャネル遮断や K チャネル遮断によっても抑制される^{7).8)}.一方、Ca チャネル遮断はかえって活動電位持続時間を短縮 し、有効不応期を短縮させることにより、自動能を 促進する⁷⁾.この自動能は心筋細胞を定期的に興奮 収縮させることにより,細胞内 Ca²⁺動態の維持に 貢献し,電気刺激なしに,例えば薬物の長期曝露の 実験などを可能にしている.

次に、多電極プローブで測定した細胞外電位持続 時間(field potential duration: FPD)をもとにヒト iPS細胞由来心筋細胞シートの再分極時間に着目す ると、電気刺激1Hz下では350~550ms^{6)~9)}と幅広 い値を取り、培養期間の延長によって細胞外電位持 続時間は延長する⁹⁾. ヒトiPS細胞由来心筋細胞シー トの再分極時間はヒト心室筋細胞の活動電位持続時 間 200~300 ms¹⁰より長いが. その原因として Kir2.1 の低発現による再分極電流の減少が考えられてい る⁶⁾.また、細胞外電位持続時間の補正式は、 corrected FPD = FPD/RR⁰²²[RR周期長(sec)]とな り、補正係数の 0.2193 は Fridericia (a = 0.33) や Bazett (*a* = 0.5) より小さく、頻度依存性短縮率が ヒト生体心より小さいことが示されている (図 2)⁶⁾. 原因としては、遅延整流性 K 電流の遅い成分を担 うイオンチャネル KCNQ1の修飾サブユニットであ る KCNE1の低発現が示され、KCNQ1電流の電位 依存性活性化速度の増加と電流密度の低下により. 頻度依存性の KCNQ1 電流増幅が減弱し、その結果、 再分極時間の短縮が減弱したと考えられている⁶⁾. 以上のように、ヒト iPS細胞由来心筋細胞は少なく とも2種類のKチャネルの電流量とキネティクスの 変化によって再分極電流が減少している細胞であ る.しかし、薬物による K チャネル電流の抑制を 介した細胞外電位持続時間の延長および早期後脱分 極の誘発を安定して検出することが可能であり¹¹⁾. 薬物性 QT 延長症候群の誘発リスクの検出系の一つ として、利用されている²⁾.

さらに、ヒト iPS細胞由来心筋細胞シートに臨床 電気生理学的検査に準じたプログラム刺激を加える と、イオンチャネル遮断薬における頻度依存性や逆 頻度依存性を測定でき、Naチャネル遮断作用によ る伝導遅延の検出(図3:ベプリジル、アミオダロ ン)^{7).8)}や、使用依存性の有無や解離速度の大小を間 接的に評価できる、マルチチャネル遮断薬において は、再分極時間における K チャネル遮断と Ca チャ ネル遮断のバランス、有効不応期の延長における K チャネル遮断と Na チャネル遮断の寄与度も知るこ とができる (図 4)⁸⁾.したがって、既存の抗不整脈 薬との比較において、ある薬物が総合的に催不整脈 的か抗不整脈的かをおおよそ判別することも可能で ある^{8).12)}.

Ⅲ. ヒト iPS 細胞由来心筋細胞の 収縮運動の特徴

ヒトiPS細胞由来心筋細胞の収縮弛緩運動は単一 細胞、二次元細胞シート、三次元組織、embryoid body において, ビデオ画像の解析, 細胞内 Ca²⁺動 態、張力の測定などを用いて研究されている。ヒト の正常心では左室収縮力において「正の力 – 頻度関 係」が観察されるが、不全心は「負の力 – 頻度関係 (陰性階段現象) |を示す、一方、ヒト iPS細胞由来 心筋細胞は配向性のない一層の細胞シートの状態で 培養すると、「負の力 – 頻度関係」を示すことが報 告されている¹³⁾.そこで、この細胞に生理的な「正 の力 – 頻度関係」を表出させ、収縮力の評価系とし て利用するため、多くの研究者は心筋細胞としての 成熟化に向けて努力を行ってきた、そのため、ヒト iPS細胞由来心筋細胞とハイドロゲル溶液¹⁴⁾. ヒト iPS由来心筋細胞と心室の線維芽細胞とコラーゲ ン /マトリゲル / フィブリンゲル¹⁵⁾,あるいはヒト iPS細胞由来心筋細胞と collagen I/マウス基底膜と を混和して¹⁶⁾,組織工学的手法で三次元組織が構 築された、さらに、この三次元組織の両端を支柱に 固定し、 定頻度の電気刺激または一定の静止張力を 加え,一軸性の張力がかかる条件下で培養すると, 筋節の整列、筋細胞の肥大や成熟化が促進し、「正 の力 – 頻度関係 |を表出できることが報告され た^{14)~16)}.しかしながら、これらの標本作成は手順 が多く、必要な細胞数は10万~100万個と多く、電 気生理学的指標を同時に測ることは難しい. そこ で、すでに薬物の心筋における電気薬理学的作用の 検出系として利用されている、3万個の細胞からな

図2 電気刺激周期長(CL)と細胞外電位持続時間(FPD)の関係を示す理論曲線 非線形方程式: FPD = FPD_{1000 ms}(CL/1000)^{*a*}に従って描かれた曲線を示す.補正係数*a*には3ロッ トの平均値 0.2193を使用した.A: FPD_{1000 ms}の値をそれぞれ 350(a),400(b),450(c),500(d) msとしたときの曲線を示す.B,C,D:個々のロットで作成した細胞シートで得られた FPDの 値と理論曲線との重ね書きを示す.ほとんどの FPDデータが理論曲線に沿って分布している. ○: zatebradine 処理前,□: zatebradine 処理後

〔文献6より Fig.5を許諾転載〕

る配向のない二次元ヒト iPS細胞由来心筋細胞シー トで収縮に関する測定方法を確立できれば,薬物の 催不整脈リスクと収縮毒性を同時に評価でき,かつ 標本を小さくできると考え,次の項目で紹介する研 究を行った.

Ⅳ. ヒト iPS細胞由来心筋細胞シートにおける 「正の収縮速度−頻度関係」の表出

ヒト iPS細胞由来心筋細胞は配向性のない二次元 細胞シートにすると,「負の力 – 頻度関係」が示すこ とが示され¹³⁾,その原因としては筋節に配向性が見 られないことや Ca²⁺ハンドリングが未熟であるた めと考えられてきた¹⁷⁾. 一般的には「負の力 – 頻度 関係」はヒト不全心筋¹⁸⁾やげっ歯類¹⁹⁾の心室筋にお いて観察され,前者では筋小胞体へのCa²⁺イオン取 り込み量が減少していることが原因として報告され ている.言い換えれば,「正の力 – 頻度関係」の表出 には,興奮頻度依存性に筋小胞体へのCa²⁺イオン 取り込み量を増加させることが必要であると考えら れる.そこでわれわれは,局所的電気ペーシングを 用いて,二次元ヒト iPS細胞由来心筋細胞シートの 収縮および弛緩の運動方向を制御し,さらに酸素分 圧を増加させることによりATP産生を促し,筋小 胞体 Ca²⁺-ATPaseである SERCA2a活性を増加さ

図3 1000 msの周期長で電気刺激しているときのヒト iPS 細胞由来心筋細 胞シートの代表的な細胞外電位波形と興奮伝播図

左から hERG Kチャネル選択的遮断薬 E-4031, ベプリジルおよびアミオダロンの曝露前 後の結果を示す.A:連続 15回の電気刺激の最後の刺激時の細胞外電位波形の代表例を 示す.B:薬物処理前(Control,上段)と薬物曝露後(下段)の代表的な興奮伝播図を示す. 各図の星印は電気刺激を行った位置を示す.等高線は 1.05 × 1.05 mm四方における 15発 目の電気刺激による興奮伝播の時間経過を示し,その間隔は 1 ms である. E-4031 (10 nM) 曝露では伝導遅延が観察されないが,アミオダロン曝露後の興奮伝播図(1.5 μM)では, 電気刺激部位近辺での著しい伝導遅延が観察された.ベプリジルでも弱い伝導遅延が電気 刺激部位近辺で観察された.

〔文献8よりFig.1を許諾転載〕

図 4 電気刺激の周期長(CL)と細胞外電位(FPD)(A),有効不応期(ERP)(B)および再分極後不応期(PRR) (C)との関係に対する E-4031(左),ベプリジル(中)およびアミオダロン(右)の作用

再分極後不応期(post-repolarization refractoriness: PRR)はPRR = ERP – FPDで計算される.hERG Kチャネル選択的遮断 薬 E-4031では逆頻度依存的な FPD 延長が観察される.マルチチャネル遮断薬のベプリジルでは FPD が延長したので、Caチャ ネル遮断 < Kチャネル遮断,同じくマルチチャネル遮断薬のアミオダロンでは FPD が短縮したので、Caチャネル遮断 > Kチャ ネル遮断である. E-4031のデータより、Kチャネル遮断による FPD 延長のみが ERP 延長に寄与するとき、PRR は延長しない ことを示す.一方、アミオダロンでは FPD 延長なしに、ERP および PRR が延長するので Naチャネル遮断のみに依存する ERP 延長である.ベプリジルは FPD, ERP および PRR が延長するので Kチャネル遮断と Na チャネル遮断双方が ERP 延長に 寄与している.黒塗りのシンボルはそれぞれ同じ周期長における Control 値からの有意な変化を示す.*p < 0.05:個々の周期長 における溶媒値からの有意な変化を示す.データは平均値 ±標準誤差.

〔文献8よりFig.2を許諾転載〕

せ,筋小胞体への Ca²⁺ イオン取込みを促進させれ
 ば,「正の収縮速度 – 頻度関係」が得られるという仮説(図 5)をたて,研究を行った⁹⁾.方法として,ヒト iPS細胞由来心筋細胞を 30,000 細胞 /2 μL滴下して,約2 mm²ほどの二次元細胞シートを多電極

プローブ上に作成し,約1週間培養した.細胞シー トの同期的収縮が安定したところで,多電極システ ム MED64-Basic (アルファメッドサイエンティ フィック社製)とライブセルイメージングシステム SI8000(ソニー社製)を組合せ,自発興奮下と電気刺

図5 ヒト iPS細胞由来心筋細胞シートの収縮運動速度における陽性階段現象の概念図

A: ヒトiPS細胞由来心筋細胞シートがプラスチック素材の多電極プローブ上に接着している条件では、心筋細胞の収縮速度(白 矢印)と弛緩速度(灰色矢印)は細胞の変形速度として観測される.

B:収縮速度変化をプラスに,弛緩速度変化をマイナスに表示している.等尺性収縮運動において,収縮頻度上昇に対して収縮 力が増加すれば,収縮速度のピークである最大収縮速度が増加すると考えられ,陽性階段現象として観測される(著者作成).

激下で細胞外電位波形と細胞運動を記録し、その興 奮伝導特性および細胞運動速度の解析を行った (図6). その結果,自発興奮下では興奮伝導と,収 縮弛緩運動の開始地点および伝播方向が一致しない ことが明らかになった(図7).特に、弛緩運動は細 胞シートの中央付近から縁へ向かって同心円状に広 がった. この現象はプラスチックでできた多電極プ ローブ上に円状に細胞密度の高い細胞シートを形成 した結果、張り付きの強い縁に向かって引っ張られ やすいという物理的な特性によると考えられた. そ こで. 弛緩運動が最も強い中央付近とそれ以外の隅 の2ヵ所を選んで、電極への電流の注入により電気 ペーシングし、比較を行った(図7)、その結果、電 気刺激の位置によって収縮弛緩運動の方向性が変化 することが確認され(図8),最大弛緩領域(maximal relaxation region: MRR)を電気刺激すると、興奮伝 導および収縮弛緩運動の開始地点が一致し(図7), 「正の収縮速度 – 頻度関係」が得られ、その増加度は +39% /Hz (心拍数が 60 bpm 増加すると収縮速度が 39% 増加) であった (図 9). この 増加度 は ヒト 心室 条片標本で報告された「正の力 – 頻度関係」の増加度 +26%/Hz(心拍数が60bpm増加すると収縮力が 26% 増加)¹⁸⁾やヒト生体心の洞結節自動能の上昇によ る左室内圧最大立ち上がり速度の増加度+35.4%/Hz (心拍数が60bpm増加すると立ち上がり速度が 35.4% 増加)²⁰⁾に匹敵すると考えられた.最大弛緩領 域の周辺(Edge)を電気刺激した場合には、増加度が +26% /Hzであり, 若干の減少が認められた(図 9). 局所的電気刺激は、どの位置でも興奮伝導と収縮運 動の開始地点をほぼ一致させたが、最大弛緩領域の 周辺を電気刺激すると収縮運動と弛緩運動との開始 地点にずれが生じるため. 収縮運動の効率性が下 がったと考えられる。一方、自発興奮時の収縮開始 地点は細胞シートの中央付近に点在することから (図 7B. Spontaneous. パネル a). 弛緩張力のかか りやすい部位では筋小胞体の Ca²⁺含有量が高いの ではないかと推察された. この観察は細胞の伸展が protein kinase GIa を活性化し、phospholambanの リン酸化を介して SERCA2a活性を増強するという 知見²¹⁾で説明できると考えられた.

次に,液体培地の平衡化に用いる混合ガスに 95% Air+5% CO₂または 95% O₂+5% CO₂を用いて酸素 分圧を約5倍変化させた.その結果,高い酸素分圧 下では,より大きな「正の収縮速度 – 頻度関係」が認

図6 細胞外電位と細胞運動速度の取得方法

64電極プローブ上に作成したヒト iPS細胞由来心筋細胞シートの位相差顕微鏡写真に動きベクトルを重ね書きした(A, B). 弛 緩期(A)と最大収縮速度時(B). (B)中の ROI (青四角, 200×200 µm²)の拡大図でベクトル表示のみを(C)に示し, 運動速度 のカラー表示を(D)に示す. この ROI で 22秒間に計測された自発活動における運動速度変化を(E)に, 運動方向のヒストグラ ム(5度毎のベクトルの数)を(F)に示す. 測定装置の図(G). ライブセルイメージングシステム SI8000(ソニー社製)内の位相差 顕微鏡のステージ上にインキュベーターを設置し, その中に細胞シートを形成させた 64多電極プローブ(アルファメッドサイ エンティフィック社製)を固定した. プローブは 37℃に保温し, 加温した混合ガスで培地を平衡化し, 実験を行った(G). ヒト iPS細胞由来心筋細胞シートの心周期における活動電位波形, 電極から取得される細胞外電位, 平均運動速度の時間経過を示し た概略図(H). 細胞外電位は細胞の活動電位による電場電位変化と, 電極表面と細胞膜間での小空間における心筋細胞のイオ ンチャネルを介したイオン濃度の変化とを反映する. 運動速度の変化は収縮期(ピンク)と弛緩期(青)に分かれる. Na⁺/Ca²⁺交 換体(NCX)による Ca²⁺イオン排出と SERCA2aによる Ca²⁺イオン取り込み活性の時間経過を示す(著者作成).

められた⁹⁾.

以上より,われわれはこの小さなヒト iPS細胞由 来心筋細胞シートを物理的特性に基づいて,興奮伝 導の開始地点と収縮弛緩運動の方向を電気刺激位置 で最適化すると,「正の収縮速度 – 頻度関係」を生体 心同様に再現することが可能なことを示した.さら に,酸素分圧の上昇は「正の収縮速度 – 頻度関係」を 促進することを見出した.これらの工夫により,ヒ ト iPS細胞由来心筋細胞シートは薬物による収縮毒 性の検出にも応用可能であることが示された.

V. 心臓再同期療法(CRT)について

われわれは心臓の二次元細胞モデルでもある,ヒ ト iPS細胞由来心筋細胞シートから得られた知見を もとに,心臓再同期療法における刺激位置について ー考察を加えてみたい.心臓再同期療法は心不全に 対する標準的な治療の一つで,その原理は伝導障害 の是正,すなわち同期不全の是正である.再同期療 法はレスポンダーにおいては心機能を改善するが, 一部の患者では反応しないことが問題となってお

図7 ヒト iPS細胞由来心筋細胞シートにおける自発興奮収縮時,最大弛緩領域付近 (maximal relaxation region: MRR)の刺激時および周辺領域 (Edge) 刺激時の興奮伝播図と収縮弛緩運動の運動速度

A:興奮伝播図.赤四角は電気刺激に用いた電極の位置を示す.等高線の間隔は1ms.

B:細胞運動速度をカラー表示によって可視化し、a~dは収縮期、d~gは弛緩期を示す. パネル aのスケールバーは 200 μm を示す.

C:自発興奮収縮時(左), MRR電気刺激時(中), Edge電気刺激時(右)の平均運動速度の代表的な経時変化. この波形はパネル Bで示された観察領域全体 1,365×1,365 µm²で取得された. 電気刺激 15発のうち最後の3発における細胞運動速度を示し ている(中および右). 収縮期(Con)と弛緩期(R)におけるパネル Bとパネル Cの a ~ gは一致している. 電気刺激によって 最大収縮速度の増加が観察された. bは最大収縮速度(maximum contraction speed: MCS), eは早い弛緩相の最大弛緩速 度(maximum fast-relaxation speed:MR_iS), fは遅い弛緩相の最大弛緩速度(maximum slow-relaxation speed:MR_iS)を示す. 〔文献 9 Fig. 2より許諾引用改変〕

り、レスポンダーとノンレスポンダーとの違いに焦 点を当てた研究が行われている。今回の細胞シート の研究では、最大弛緩領域付近を電気刺激し、弛緩 運動に興奮伝導と収縮運動を連動・同期させること によって「正の収縮速度 – 頻度関係」の回復につなげ た.ここでは、まず本研究で得られた知見に関連す る臨床研究を3編紹介し、弛緩機能と電極刺激部位 との連関を考察する. 慢性的な右室心尖部ペーシン グを行っている患者で駆出率を維持できた群と悪化 させた群との比較を行った研究では,QRS幅は左室 の駆出率と負に相関し,左室拡張末期径に正に相関 し,平均 E'速度は負に相関することが報告された. 特にペーシング時 QRS幅は独立して平均 E'速度に 関連することから,ペーシング時 QRS幅は弛緩機

図8 電気刺激位置によるヒト iPS細胞由来心筋細胞シートの運動ベクトルの方向の変化

各 200 × 200 µm²の ROI (白四角)から取得した,代表的な動きベクトルのヒストグラムを示す.図7と同じヒト iPS細胞由来 心筋細胞シートを,95% O₂+5% CO₂の混合ガス下で,最大弛緩領域付近(at MRR)でペーシングした場合(右)または周辺領域 (at Edge)をペーシングした場合(下)を示す.細胞シートの位相差画像上の赤四角はペーシング電極の位置を示す(左上パネ ル).各パネルは,収縮期(ピンク)と弛緩期(青)に検出された動きベクトルの 360°分布を示す.収縮期と弛緩期の動きベクト ルは,連続電気ペーシング 15発のうち最後の9発のデータから抽出し,2.5°ごとに並べた.ヒストグラム中の 1000と 3000 は任 意の方向の動きベクトルの総数を示す.明るいオレンジ色でハイライトされたヒストグラムは,MRR と Edge でペーシングし たときにほぼ同じ領域から取得された.電気刺激位置によって両者の動きベクトルの方向は全く異なることが示されている.

〔文献9より Fig. 3を許諾転載〕

能にも関連していることが報告されている²²⁾.また リード植込み直後のLVdP/dt_{min}の増加およびWeiss methodで算出される弛緩機能を表すτ値の減少が, レスポンダーではノンレスポンダーと比較して有意 に大きく、特にτ値の変化はレスポンダーの予測に おいて特異度が高いことが報告されている²³⁾.さら に、拡張型心筋症で完全左脚ブロックの患者におけ る再同期療法においては、左室刺激電極が収縮遅延 領域かつ弛緩遅延領域に設置された場合は94.4%が レスポンダーであったが、収縮遅延領域のみでは 70%,弛緩遅延領域のみでは60.9%がレスポンダー であった²⁴⁾.これらの報告は収縮同期不全と弛緩同 期不全の双方の改善が心臓再同期療法の成功に重要 であることを示している(図10).われわれの細胞

図 9 ヒト iPS細胞由来心筋細胞シートの収縮弛緩運動の運動速度,間隔および持続時間 に対する電気ペーシングの位置と刺激頻度の影響

Aは、MRRおよび Edge 電気刺激時の最大収縮速度(MCS.上)、早い弛緩相の最大弛緩速度(MR,S、下)、 Bは、収縮-弛緩持続時間(CRsD、図 7Cの a ~ gの区間)、細胞外電位持続時間(FPD)および収縮相ピー クー早い弛緩相ピーク間隔(CR_f peak interval:図 7Cの b ~ eの間隔)を示す.心筋分化後 44 日目の細胞 シートを用いて 95% O₂+5% CO₂の混合ガス下で実験を行った.動きベクトルは観察領域全体から取得 した(図 7B参照)、データは平均値±標準誤差(n = 5)で表され、最小刺激頻度である 0.7 Hzの値との有 意差を #p < 0.05および #p < 0.01で示す.ペーシング位置の異なる値間の有意差を *p < 0.05および **p < 0.01で示す.電気ペーシングによって「正の運動速度 - 頻度関係」が認められる(A).

〔文献9より Fig.5を許諾転載〕

シートの研究では,最大弛緩領域付近で電気刺激を することによって効率的に収縮速度の増加を引き出 した.弛緩機能が保存された部位は筋小胞体機能が 保持されていると推察されるので,弛緩遅延領域の ペーシングは弛緩同期不全の改善だけでなく,収縮 力増加に一役担っている可能性がある.

図 10 CRT における電気刺激位置による収縮能および拡張能の改善効果

収縮遅延領域の電気刺激(左)と同様に拡張遅延領域の電気刺激(右)は心室のポンプ機能を改善する. 拡張遅延領域は電気刺激 で収縮開始を同期することによって, 拡張開始が同期し, 拡張能の改善に結びつく(著者作成).

VI. 結 語

多電極上に作製したヒト iPS細胞由来心筋細胞の 二次元細胞シートは薬物曝露による電気生理学的変 化の評価に有用である.さらに,電気刺激の位置を コントロールすると,薬物曝露による収縮弛緩運動 の変化を評価できることも示された.また,細胞 シートの収縮速度を十分引き出すためには,細胞 シートの物理的制限に基づいて,最大弛緩領域に電 気刺激位置を決定し,興奮伝導,収縮および弛緩運 動の開始地点と伝播方向を一致させることが有用で あることが示された.心臓再同期療法において,弛 緩機能や弛緩遅延も同時に改善するような位置に刺 激電極が設置されると,レスポンダーになる割合が 高いという臨床報告もあわせると,今回の研究結果 は心室の弛緩機能や弛緩順序に着目することの重要 性を示唆している.

付記

本稿は,第21回鈴木謙三記念医科学応用研究財団 研究助成による日本不整脈心電学会論文賞を受賞し た論文とその関連論文を総説にまとめたものである.

利益相反

本論文について、開示すべき利益相反事項はない.

受賞論文

Izumi-Nakaseko H, Chiba K, Hagiwara-Nagasawa M, Satsuka A, Goto A, Nunoi Y, Kambayashi R, Matsumoto A, Takei Y, Kanda Y, Naito AT, Sugiyama A : Optimizing the Direction and Order of the Motion Unveiled the Ability of Conventional

Monolayers of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes to Show Frequency-Dependent Enhancement of Contraction and Relaxation Motion. Front Cell Dev Biol, 2020; 8: 542562.

〔文 献〕

- Jackson AO, Rahman GA, Yin K, et al. : Enhancing matured stem-cardiac cell generation and transplantation : A novel strategy for heart failure therapy. J Cardiovasc Transl Res, 2021 ; 14 : 556-572
- 2) Strauss DG, Wu WW, Li Z, et al.: Translational models and tools to reduce clinical trials and improve regulatory decision making for QTc and proarrhythmia risk (ICH E14/S7B Updates). Clin Pharmacol Ther, 2021; 109: 319-333
- 3) Funakoshi S, Yoshida Y : Recent progress of iPSC technology in cardiac diseases. Arch Toxicol, 2021 ; 95 : 3633-3650
- 4) Yang X, Pabon L, Murry CE : Engineering adolescence : maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res, 2014 ; 114(3) : 511-523
- 5) Ma J, Guo L, Fiene SJ, et al. : High purity humaninduced pluripotent stem cell-derived cardiomyocytes : electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol, 2011 ; 301 : H2006-H2017
- 6) Izumi-Nakaseko H, Kanda Y, Nakamura Y, et al. : Development of correction formula for field potential duration of human induced pluripotent stem cellderived cardiomyocytes sheets. J Pharmacol Sci, 2017 ; 135 : 44-50
- 7) Izumi-Nakaseko H, Nakamura Y, Wada T, et al. : Characterization of human iPS cell-derived cardiomyocyte sheets as a model to detect druginduced conduction disturbance. J Toxicol Sci, 2017; 42:183-192
- 8) Izumi-Nakaseko H, Hagiwara-Nagasawa M, Naito AT, et al. : Application of human induced pluripotent stem cell-derived cardiomyocytes sheets with microelectrode array system to estimate antiarrhythmic properties of multi-ion channel blockers. J Pharmacol Sci, 2018; 137: 372-378
- 9) Izumi-Nakaseko H, Chiba K, Hagiwara-Nagasawa M, et al. : Optimizing the direction and order of the motion unveiled the ability of conventional monolayers

of human induced pluripotent stem cell-derived cardiomyocytes to show frequency-dependent enhancement of contraction and relaxation motion. Front Cell Dev Biol, 2020; 8:542562

- 10) Fozzard HA, Arnsdorf MF : Cardiac electrophysiology. The Heart and Cardiovascular System : Scientific Foundations. (eds. Fozzard HA, Haber E, Katz AM, et al.) , 2nd ed. Raven Press, New York, 1992 ; 99e110
- 11) Nakamura Y, Matsuo J, Miyamoto N, et al. : Assessment of testing methods for drug-induced repolarization delay and arrhythmias in an iPS cellderived cardiomyocyte sheet : multi-site validation study. J Pharmacol Sci, 2014; 124: 494-501
- 12) Izumi-Nakaseko H, Fujiyoshi M, Hagiwara-Nagasawa M, et al.: Dasatinib can impair left ventricular mechanical function but may lack proarrhythmic effect : A proposal of non-clinical guidance for predicting clinical cardiovascular adverse events of tyrosine kinase inhibitors. Cardiovasc Toxicol, 2020; 20: 58-70
- 13) Sasaki D, Matsuura K, Seta H, et al. : Contractile force measurement of human induced pluripotent stem cellderived cardiac cell sheet-tissue. PLoS One, 2018 ; 13 : e0198026
- 14) Ronaldson-Bouchard K, Yeager K, Teles D, et al. : Engineering of human cardiac muscle electromechanically matured to an adult-like phenotype. Nat Protoc, 2019 ; 14 : 2781-2817
- 15) Feric NT, Pallotta I, Singh R, et al. : Engineered cardiac tissues generated in the Biowire[™] II : A platform for human-based drug discovery. Toxicol Sci, 2019; 172: 89-97
- 16) Ruan JL, Tulloch NL, Razumova MV, et al.: Mechanical stress conditioning and electrical stimulation promote contractility and force maturation of induced pluripotent stem cell-derived human cardiac tissue. Circulation, 2016; 134: 1557-1567
- 17) Yang X, Pabon L, Murry CE : Engineering adolescence : maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res, 2014 ; 114 : 511-523
- 18) Pieske B, Maier LS, Bers DM, et al. : Ca²⁺ handling and sarcoplasmic reticulum Ca²⁺ content in isolated failing and nonfailing human myocardium. Circ Res, 1999 ; 85 : 38-46
- 19) Maier LS, Bers DM, Pieske B : Differences in Ca²⁺handling and sarcoplasmic reticulum Ca²⁺-content in isolated rat and rabbit myocardium. J Mol Cell Cardiol, 2000 ; 32 : 2249-2258
- 20) Feldman MD, Alderman JD, Aroesty JM, et al. : Depression of systolic and diastolic myocardial reserve during atrial pacing tachycardia in patients with

dilated cardiomyopathy. J Clin Invest, 1988 ; 82 : 1661-1669

- 21) Scotcher J, Prysyazhna O, Boguslavskyi A, et al. : Disulfide-activated protein kinase G I a regulates cardiac diastolic relaxation and fine-tunes the Frank-Starling response. Nat Commun, 2016; 7: 13187
- 22) Kim D : Relationship between paced QRS duration and myocardial relaxation of the left ventricle in patients with chronic right ventricular apical pacing. J Electrocardiol. 2021; 66: 54-61.
- 23) Kato H, Shimano M, Sumi T, et al. : Acute improvement

of left ventricular relaxation as a predictor of volume reduction after cardiac resynchronization therapy : a pilot study assessing the value of left ventricular hemodynamic parameter. Pacing Clin Electrophysiol, 2014 ; 37 : 1544-1552

24) Wang C, Shi J, Ge J, et al.: Left ventricular systolic and diastolic dyssynchrony to improve cardiac resynchronization therapy response in heart failure patients with dilated cardiomyopathy. J Nucl Cardiol, 2021; 28:1023-1036

Development of a Methodology for Showing a Positive Staircase of Contraction in Conventional Two-Dimensional Cell Sheets of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

Hiroko Izumi-Nakaseko¹, Koki Chiba¹, Ayano Satsuka², Ai Goto¹, Yoshio Nunoi¹, Ryuichi Kambayashi¹, Akio Matsumoto³, Yoshinori Takei¹, Yasunari Kanda², Atsuhiko T. Naito⁴, Atsushi Sugiyama^{1,3}

> ¹Department of Pharmacology, Faculty of Medicine, Toho University ²Division of Pharmacology, National Institute of Health Sciences ³Department of Aging Pharmacology, Faculty of Medicine, Toho University ⁴Department of Physiology, Division of Cell Physiology, Graduate School of Medicine, Toho University

A conventional two-dimensional cell sheet of human induced pluripotent stem cell-derived cardiomyocytes lying on microelectrode array probes has been employed to estimate their excitation-conduction properties. By applying local electric stimuli on the cell sheet, the proarrhythmic and antiarrhythmic profiles of a drug can be systematically evaluated. Drug-induced changes in contraction-relaxation motion can also be evaluated using the cell sheet. Namely, a physiological property called "positive contraction velocity-frequency relationship" can be developed in the cell sheet by initiating the excitation, contraction, and relaxation in the same area. In order to fully elicit the contractile motion of the cell sheet, it is essential to set the stimulation sites around the maximum relaxation region to overcome its physical limitation due to lying on the plastic probe; i.e., the center of the cell sheet is stretched toward its peripheral area. This finding may suggest that cardiac resynchronization therapy can be further improved by adopting the currently described new concept of cardiac pacing with monitoring of ventricular motion.

Keywords : Human induced pluripotent stem cell-derived cardiomyocytes, Excitation-contraction relationship, Contraction-relaxation motion, Positive contraction velocity-frequency relationship, Cardiac resynchronization therapy